Selamat Datang Di Blog ku

Wednesday, 7 May 2014

LOGIKA INFORMATIKA

BAB 1 : DASAR-DASAR LOGIKA
1.1 PENGERTIAN UMUM LOGIKA
Filsafat dan matematika adalah bidang pengetahuan rasional yang
ada sejak dahulu. Jauh sebelum matematika berkembang seperti
sekarang ini dan penerapannya menyentuh hampir seluruh bidang ilmu
pengetahuan modern, ilmuwan dan filosof yunani telah mengembangkan
dasar pemikiran ilmu geometri dan logika. Sebut saja THALES (640-546
SM) yaitu seorang ilmuwan geometri yang juga disebut sebagai bapak
filosofi dan penalaran deduktif. Ada juga ahli matematika dan filosof
PHYTAGORAS (572-497 SM) dengan dalil phytagorasnya yang terkenal
yaitu a2+b2=c2 .
MATEMATIKA DAN FILSAFAT
Persamaan filsafat dan matematika
Kerja Filosof adalah berpikir konsep.
Kerja Matematikawan adalah memperjelas konsep yang
dikembangkan oleh filosof.
Perbedaan filsafat dan matematika
Filsafat bebas menerapkan berbagai metode rasional.
Matematikawan hanya menerapkan metode deduksi.
MATEMATIKA DAN LOGIKA
Menurut BETRAND RUSSEL matematika adalah ilmu yang
menyangkut deduksi logis tentang akibat-akibat dari pangkal fikir umum
semua penalaran.
Ini berkaitan dengan konsepsi matematika sebagai ilmu formal,
ilmu tentang bilangan dan ruang, ilmu tentang besaran dan keluasan,
ilmu tentang hubungan, pola bentuk, dan rakitan juga sebagai ilmu yang
bersifat abstrak dan deduktif.
MAKNA LOGIKA
Berasal dari bahasa yunani “LOGOS” yang berarti kata, ucapan,
atau alasan. Logika adalah metode atau teknik yang diciptakan untuk
meneliti ketepatan penalaran. Logika mengkaji prinsip-prinsip penalaran
yang benar dan penalaran kesimpulan yang absah. Ilmu ini pertama kali
dikembangkan sekitar 300 SM oleh ARISTOTELES dan dikenal sebagai
logika tradisioanal atau logika klasik. Dua ribu tahun kemudian
dikembangkan logika modern oleh GEORGE BOOLE dan DE MORGAN yang
disebut dengan Logika Simbolik karena menggunakan simbol-simbol
logika secara intensif.
Dasar pemikiran logika klasik adalah logika benar dan salah yang
disimbolkan dengan 0 (untuk logika salah) dan 1 (untuk logika benar)
yang disebut juga LOGIKA BINER. Tetapi pada kenyataanya dalam
kehidupan sehari-hari banyak hal yang kita jumpai yang tidak bisa
dinyatakan bahwa sesuatu itu mutlak benar atau mutlak salah. Ada
daerah dimana benar dan salah tersebut nilainya tidak bisa ditentukan
mutlak benar atau mutlak salah alias kabur.
1.2 LOGIKA DAN PERNYATAAN
1.2.1 LOGIKA
PENGERTIAN UMUM LOGIKA
Logika adalah metode atau teknik yang diciptakan untuk meneliti
ketepatan penalaran serta mengkaji prinsip-prinsip penalaran yang benar
dan penarikan kesimpulan yang absah.
Ilmu logika berhubungan dengan kalimat-kalimat (argumen) dan
hubungan yang ada diantara kalimat-kalimat tersebut. Tujuannya adalah
memberikan aturan-aturan sehingga orang dapat menentukan apakah
suatu kalimat bernilai benar.
Kalimat yang dipelajari dalam logika bersifat umum, baik bahasa
sehari-hari maupun bukti matematika yang didasarkan atas hipotesahipotesa.
Oleh karena itu aturan-aturan yang berlaku di dalamnya
haruslah bersifat umum dan tidak tergantung pada kalimat atau disiplin ilmu tertentu. Ilmu logika lebih mengarah dalam bentuk sintaks-sintaks
daripada arti dari kalimat itu sendiri.
1.2.2 PERNYATAAN (PROPOSISI)
Kata merupakan rangkaian huruf yang mengandung arti,
sedangkan kalimat adalah kumpulan kata yang disusun menurut aturan
tata bahasa dan mengandung arti. Di dalam matematika tidak semua
pernyataan yang bernilai benar atau salah saja yang digunakan dalam
penalaran. Pernyataan disebut juga kalimat deklaratif yaitu kalimat yang
bersifat menerangkan. Disebut juga proposisi.
Pernyataan/ Kalimat Deklaratif/ Proposisi adalah kalimat yang bernilai
benar atau salah tetapi tidak keduanya.
Contoh :
1. Yogyakarta adalah kota pelajar (Benar).
2. 2+2=4 (Benar).
3. Semua manusia adalah fana (Benar).
4. 4 adalah bilangan prima (Salah).
5. 5x12=90 (Salah).
Tidak semua kalimat berupa proposisi
Contoh :
1. Dimanakah letak pulau bali?.
2. Pandaikah dia?.
3. Andi lebih tinggi daripada Tina.
4. 3x-2y=5x+4.
5. x+y=2.
1.2.3 PENGHUBUNG KALIMAT DAN TABEL KEBENARAN
Satu atau lebih proposisi dapat dikombinasikan untuk menghasilkan
proposisi baru lewat penggunaan operator logika. Proposisi baru yang
dihasilkan dari kombinasi tersebut disebut dengan proposisi majemuk
(compound composition), sedangkan proposisi yang bukan merupakan
hasil dari kombinasi proposisi lain disebut proposisi atomik. Proposisi
majemuk tersusun dari sejumlah proposisi atomik.Dalam logika dikenal 5 buah penghubung

 Contoh 1.1 :
Misalkan : p menyatakan kalimat “ Mawar adalah nama bunga”
Q menyatakan kalimat “ Apel adalah nama buah”
Maka kalimat “ Mawar adalah nama bunga dan Apel adalah nama
buah “
Dinyatakan dengan simbol p Ù q
Contoh 1.2 :
Misalkan p: hari ini hari minggu
q: hari ini libur
nyatakan kalimat dibawah ini dengan simbol logika :
b. Hari ini tidak hari minggu dan tidak libur
c. Tidak benar bahwa hari ini hari minggu dan libur
Penyelesaian
a. Kata “tetapi” mempunyai arti yang sama dengan dan sehingga
kalimat (a) bisa ditulis sebagai : ¬p Ù
q b. ¬p Ù¬
q c. ¬(p Ù
q) NEGASI (INGKARAN)
Jika p adalah “ Semarang ibukota Jawa Tengah”, maka ingkaran atau
negasi dari pernyataan p tersebut adalah ¬p yaitu “ Semarang bukan
ibukota Jawa Tengah” atau “Tidak benar bahwa Semarang ibukota Jawa
Tengah”. Jika p diatas bernilai benar (true), maka ingkaran p (¬p) adalah
bernilai salah (false) dan begitu juga sebaliknya.
KONJUNGSI
Konjungsi adalah suatu pernyataan majemuk yang menggunakan
penghubung “DAN/AND” dengan notasi “Ù
Contoh 1.3:
p: Fahmi makan nasi
Q:Fahmi minum kopi
Maka pÙq : Fahmi makan nasi dan minum kopi
Pada konjungsi pÙq akan bernilai benar jika baik p maupun q bernilai
benar. Jika salah satunya (atau keduanya) bernilai salah maka pÙq
bernilai salah.
DISJUNGSI
Disjungsi adalah pernyataan majemuk yang menggunakan penghubung
“ATAU/OR” dengan notasi “Ú”.
Kalimat disjungsi dapat mempunyai 2 arti yaitu :
a. INKLUSIF OR
Yaitu jika “p benar atau q benar atau keduanya true”
Contoh :
p : 7 adalah bilangan prima
q : 7 adalah bilangan ganjil
p Ú q : 7 adalah bilangan prima atau ganjil
Benar bahwa 7 bisa dikatakan bilangan prima sekaligus bilangan
ganjil.
b. EKSLUSIF OR
Yaitu jika “p benar atau q benar tetapi tidak keduanya”.
Contoh :
p : Saya akan melihat pertandingan bola di TV.
q : Saya akan melihat pertandingan bola di lapangan.
p Ú q : Saya akan melihat pertandingan bola di TV atau lapangan.
Hanya salah satu dari 2 kalimat penyusunnya yang boleh bernilai
benar yaitu jika “Saya akan melihat pertandingan sepak bola di TV saja
atau di lapangan saja tetapi tidak keduanya.
IMPLIKASI
Misalkan ada 2 pernyataan p dan q, untuk menunjukkan atau
membuktikan bahwa jika p bernilai benar akan menjadikan q bernilai
benar juga, diletakkan kata “JIKA” sebelum pernyataan pertama lalu
diletakkan kata “MAKA” sebelum pernyataan kedua sehingga didapatkan
suatu pernyataan majemuk yang disebut dengan
“IMPLIKASI/PERNYATAAN BERSYARAT/KONDISIONAL/ HYPOTHETICAL
dengan notasi “ ”.
Notasi p q dapat dibaca :
1. Jika p maka q
2. q jika p
3. p adalah syarat cukup untuk q
4. q adalah syarat perlu untuk p
Contoh 1.4:
1. p : Pak Ali adalah seorang haji.
    q : Pak Ali adalah seorang muslim.
p q : Jika Pak Ali adalah seorang haji maka pastilah dia seorang muslim.
2. p : Hari hujan.
   q : Adi membawa payung.
Benar atau salahkah pernyataan berikut?
a. Hari benar-benar hujan dan Adi benar-benar membawa
payung.
b. Hari benar-benar hujan tetapi Adi tidak membawa payung.
c. Hari tidak hujan tetapi Adi membawa payung.
d. Hari tidak hujan dan Adi tidak membawa payung.


BIIMPLIKASI

Biimplikasi atau bikondosional adalah pernyataan majemuk dari dua pernyataan p dan q yang dinyatakan dengan notasi “p Û q” yang bernilai sama dengan (p Þq) Ù (q Þ p)  sehingga dapat dibaca “ p jika dan hanya jika q” atau “p bila dan hanya bila q”. Biimplikasi 2 pernytaan  hanya akan bernilai benar jika implikasi kedua kalimat penyusunnya sama-sama bernilaii benar.

Contoh 1.5 :
    p : Dua garis saling berpotongan adalah tegak lurus.
    q : Dua garis saling membentuk sudut 90 derajat.
    p Û q : Dua garis saling berpotongan adalah tegak lurus jika dan hanya jika dua garis saling membentuk sudut 90 derajat.

TABEL KEBENARAN

p
Q
Øp
Øq
pÚq
pÙq
pÞq
pÛq
p Å q
T
T
F
F
T
T
F
T
T
T
F
F
T
T
F
T
F
F
F
T
T
F
T
F
T
T
F
F
F
T
T
F
F
F
T
T

Untuk menghindari perbedaan konotasi dan keganjilan arti dalam menerjemahkan simbol-simbol logika maka dalam matematika tidak disyaratkan adanya hubungan antara kedua kalimat penyusunnya. Kebenaran suatu kalimat berimplikasi semata-mata hanya tegantung pada nilai kebenaran kaliamat penyusunnya. Karena itu digunakan tabel kebenaran penghubung. Jika p dan q adalah kalimat-kalimat dimana T=true/benar dan F=false/salah, maka untuk n variable (p,q,…) maka tabel kebenaran memuat 2n baris.


1.1.1          INGKARAN (NEGASI) SUATU PENYATAAN

NEGASI SUATU KONJUNGSI

Contoh : Fahmi makan nasi dan minum kopi
Suatu konjumgsi akan bernilai benar jika kedua kalimat penyusunnya yaitu p dan q bernilai benar, sedangkan negasi adalah pernyataan yang bernilai salah jika pernyataan awalnya bernilai benar  dan bernilai benar jika pernyataan awalnya bernilai salah.
          Oleh karena itu negasi dari : “Fahmi makan nasi dan minum kopi” adalah suatu pernyataan majemuk lain yang salah satu komponennya merupakan negasi dari komponen pernyataan awalnya. Jadi negasinya adalah: “Fahmi tidak makan nasi atau tidak minum kopi”.
Disini berlaku hukum De Morgan yaitu : Ø(pÙq)  ekuivalen dengan ØpÚØq

NEGASI SUATU DISJUNGSI

Contoh : “Fahmi makan nasi atau minum kopi”

Suatu disjungsi akan bernilai salah hanya jika kedua komponen penyusunnya bernilai salah., selain itu benar. Oleh karena itu negasi dari kalimat  diatas adalah : “ Tidak benar bahwa Fahmi makan nasi atau minum kopi” atau dapat juga dikatakan “Fahmi tidak makan nasi dan tidak minum kopi. Disini berlaku hukum De Morgan yaitu : Ø(pÚq) º ØpÙØq

NEGASI SUATU IMPLIKASI

Contoh 1.6 : “Jika hari hujan maka Adi membawa payung”.

          Untuk memperoleh negasi dari pernyataan diatas, kita dapat mengubah bentuknya ke dalam bentuk disjungsi kemudian dinegasikan, yaitu :
pÞ q º ØpÚq
Maka negasinya
Ø( pÞ q) º Ø(ØpÚq) º pÙØq

NEGASI SUATU BIIMPLIKASI

          Biimplikasi atau bikondisional adalah pernyataan majemuk dari dua pernyataaan p dan q yang dinotasikan dengan p Û q º (p Þ q) Ù (q Þ p) sehingga : Ø(p Û q) º Ø [(p Þ q) Ù (q Þ p)]
                                   º Ø [(ØpÚq ) Ù (ØqÚp)]
                                  º Ø (ØpÚq ) Ú Ø(ØqÚp)
                   Ø(p Û q) º (pÙØq ) Ú (qÙØp)


1.2       TAUTOLOGI, KONTRADIKSI, DAN CONTINGENT

Tautologi adalah suatu bentuk kalimat yang selalu bernilai benar (True) tidak peduli bagaimanapun nilai kebenaran masing-masing kalimat penyusunnya, sebaliknya kontradiksi adalah suatu bentuk kalimat yang selalu bernilai salah (False), tidak peduli bagaimanapun nilai kebenaran masing-masing kalimat penyusunnya.
Dalam tabel kebenaran, suatu tautologi selalu bernilai True pada semua barisnya dan kontradiksi selalu bernilai False pada semua baris. Kalau suatu kalimat tautologi diturunkan lewat hukum-hukum yang ada maka pada akhirnya akan menghasilkan True, sebaliknya kontradiksi akan selalu bernilai False.
          Jika pada semua nilai kebenaran menghasilkan nilai F dan T, maka disebut formula campuran (contingent).

 

1.1       KONVERS, INVERS, DAN KONTRAPOSISI

Perhatikan pernytaan di bawah ini! Ø  Ù  Ú  Þ  Û

“Jika suatu bender adalah bendera RI maka ada warna merah pada bendera tersebut”

Bentuk umum implikasi di atas adalah “p Þ q” dengan
p : Bendera RI
q : Bendera yang ada warna merahnya.

Dari implikasi diatas dapat dibentuk tiga implikasi lainnya yaitu :
1.   KONVERS, yaitu q Þ p
Sehingga implikasi diatas menjadi :
“ Jika suatu bendera ada warna merahnya, maka bendera tersebut adalah bendera RI”.

2.   INVERS, yaitu Øp Þ Øq
Sehingga implikasi diatas menjadi :
“ Jika suatu bendera bukan bendera RI, maka pada bendera tersebut tidak ada warna merahnya”.

3.   KONTRAPOSISI, yaitu Øq Þ Øp
Sehingga implikasi di atas menjadi :
“ Jika suatu bendera tidak ada warna merahnya, maka bendera tersebut bukan bendera RI”.

Suatu hal yang penting dalam logika adalah kenyataan bahwa suatu implikasi selalu ekuivalen dengan kontraposisinya, akan tetapi tidak demikian halnya dengan  invers dan konversnya.

Hal ini dapat dilihat dari tabel kebenaran berikut

p
q
Øp
Øq
pÞq
q Þ p
Øp Þ Øq
Øq Þ Øp
T
T
F
F
T
T
T
T
T
F
F
T
F
T
T
F
F
T
T
F
T
F
F
T
F
F
T
T
T
T
T
T


INGKARAN KONVERS, INVERS, DAN KONTRAPOSISI

Contoh 1.8:
Tentukan ingkaran atau negasi konvers, invers, dan kontraposisi dari implikasi berikut.
“Jika suatu bendera adalah bendera RI maka bendera tersebut berwarna merah dan putih”

Penyelesaian

Misal p : Suatu bendera adalah bendera RI
        q : Bendera tersebut berwarna merah dan putih
maka kalimatnya menjadi p Þ q atau jika menggunakan operator dan maka p Þ q ekuivalen(sebanding/») dengan  Øp Ú q. Sehingga

1.   Negasi dari implikasi
Implikasi           : (pÞq) » Øp Ú q
Negasinya        : Ø(ØpÚq) » pÙØq
Kalimatnya       :“Suatu bendera adalah bendera RI dan bendera       tersebut tidak berwarna merah dan putih”.
2.   Negasi dari konvers
Konvers            : qÞp » ØqÚp
Negasinya        : Ø(ØqÚp) » qÙØp
Kalimatnya       : “Ada/Terdapat bendera berwarna merah dan putih tetapi bendera tersebut bukan bendera RI”.
3.   Negasi dari invers
Invers              : Øp Þ Øq » Ø(Øp)ÚØq) » pÙØq
Negasinya        : Ø(pÙØq) » ØpÚq
Kalimatnya       : “Suatu bendera bukan bendera RI atau bendera tersebut berwarna merah dan putih”.
4.   Negasi dari kontraposisi
Kontraposisi      : Øq Þ Øp » Ø(Øq)ÚØp » qÚØp
Negasinya        : Ø(qÚØp) » ØqÙp
Kalimatnya       : “ Suatu bendera tidak berwarna merah dan putih dan bendera tersebut adalah bendera RI”.


1.5 EKUIVALENSI LOGIKA

          Pada tautologi, dan juga kontradiksi, dapat dipastikan bahwa jika dua buah ekspresi logika adalah tautologi, maka kedua buah ekspresi logika tersebut ekuivalen secara logis, demikian pula jika keduanya kontradiksi. Persoalannya ada pada contingent, karena memiliki semua nilai T dan F. Tetapi jika urutan T dan F atau sebaliknya pada tabel kebenaran tetap pada urutan yang sama maka tetap disebut ekuivalen secara logis. Perhatikan pernyataan berikut :

Contoh 1.9 :
1. Dewi sangat cantik dan peramah.
2. Dewi peramah dan sanagt cantik.

Kedua pernyataan di atas, tanpa dipikir panjang, akan dikatakan ekuivalen atau sama saja. Dalam bentuk ekspresi logika dapat ditulis sebagai berikut :
A = Dewi sangat cantik.
B = Dewi peramah.
Maka ekspresi logikanya :
1. A Ù B
2. B Ù A

Jika dikatakan kedua buah ekspresi logika tersebut ekuivalen secara logis maka dapat ditulis A Ù B º B Ù A. Ekuivalensi logis dari kedua ekspresi logika tersebut dapat dibuktikan dengan tabel kebenaran sebagai berikut ini :
A
B
AÙB
BÙA
T
T
T
T
T
F
F
F
F
T
F
F
F
F
F
F

Pembuktian dengan tabel kebenaran diatas, walaupun setiap ekspresi logika memiliki nilai T dan F, tetapi karena memiliki urutan yang sama, maka secara logis tetap dikatakan ekuivalen. Tetapi jika urutan T dan F tidak sama, maka tidak biasa dikatakan ekuivalen secara logis. Tabel kebenaran merupakan alat untuk membuktikan kebenaran ekuivalensi secara logis. Kesimpulan diambil berdasarkan hasil dari tabel kebenaran tersebut. Lihat pernyataan berikut ini :

Contoh 1.10 :
1. Badu tidak pandai, atau dia tidak jujur.
2. Adalah tidak benar jika Badu pandai dan jujur.
Secara intuitif dapat ditebak bahwa kedua pernyataan di atas sebenarnya sama, tetapi bagaimana jika idbuktikan dengan menggunkan tabel kebenaran berdasarkan ekspresi logika. Adapaun langkah-langkahnya :

1. Ubah dahulu argumen di atas ke dalam bentuk ekspresi/notasi logika.
    Misal : A=Badu pandai
               B=Badu jujur
    Maka kalimatnya menjadi
    1. ØAÚØB
    2. Ø(AÙB)

2. Buat tabel kebenarannya

A
B
ØA
ØB
AÙB
ØAÚØB
Ø(AÙB)
T
T
F
F
T
F
F
T
F
F
T
F
T
T
F
T
T
F
F
T
T
F
F
T
T
F
T
T

Perhatikan ekspresi di atas! Meskipun kedua ekspresi logika di atas memiliki nilai kebenaran yang sama, ada nilai T dan F, keduanya baru dikatakan ekuivalen secara logis jika dihubungkan dengan perangkai ekuivalensi dan akhirnya menghasilkan tautologi.

3. Tambahkan perangkai biimplikasi untuk menghasilkan tautologi

ØAÚØB
Ø(AÙB)
ØAÚØB Û Ø(AÙB)
F
F
T
T
T
T
T
T
T
T
T
T

Jika hasilnya adalah tautologi (bernilai T semua), maka dikatakan bahwa kedua argumen tersebut ekuivalen secara logis.

1.5.1 HUKUM-HUKUM EKUIVALENSI LOGIKA

Identitas
pÙ1 º p     
pÚ0 º p
Ikatan     
pÚ1 º T
pÙ0 º 0
Idempoten
pÚp º p
pÙp º p
Negasi
pÚØp º 1
pÙØp º 0
Negasi Ganda
ØØp º p

Komutatif
pÚq º qÚp   
 pÙq º qÙp
Asosiatif
(pÚq)Úr º pÚ(qÚr)
(pÙq)Ùr º pÙ(qÙr)
Distributif
pÚ(qÙr) º (pÚq)Ù(pÚr)
pÙ(qÚr) º (pÙq)Ú(pÙr)
De Morgan’s
Ø(pÙq) º Øp Ú Øq
Ø(pÚq) º Øp Ù Øq
Aborbsi
pÙ(pÚq) º p
pÚ(pÙq) º p

Selain dengan menggunkan tabel kebenaran, menentukan dua buah argumen adalah ekuivalen secara logis dapat juga menggunakan hukum-hukum ekuivalensi logika. Cara ini lebih singkat

Contoh 1.11 :
1.   Buktikan ekuivalensi kalimat di bawah ini dengan hukum-hukum ekuivalensi.
Ø(pÚØq) Ú (ØpÙØq) º Øp
Penyelesaian
Ø(pÚØq) Ú (ØpÙØq) º (ØpÙØ(Øq)) Ú (ØpÙØq)
                             º (ØpÙq) Ú (ØpÙØq)
                             º Øp Ù (qÚØq)
                             º Øp Ù T
                             º Øp                 Terbukti

Dalam membuktikan ekuivalensi pºq ada 3 macam cara yang bisa dilakukan :
  1. P diturunkan terus menerus (dengan menggunakan hukum-hukum ekuivalensi logika yang ada).
  2. Q diturunkan terus-menerus (dengan menggunakan hukum-hukum ekuivalensi logika yang ada), sehingga didapat P.
  3. P dan Q diturunkan secara terpisah sehingga akhirnya didapat R
Sebagai aturan kasar, biasanya bentuk yang lebih kompleks yang diturunkan ke dalam bentuk yang sederhana. Jadi jika p kompleks amaka aturan (1) yang dilakukan. Sebaliknya jika q yang lebih kompleks maka aturan (2) yang dilakukan. Aturan (3) digunakan jika p dan q sama-sama kompleks.

PENYEDERHANAAN LOGIKA

Operasi penyederhanaan menggunakan hukum-hukum ekuivalensi logis. Selanjutnya perhatikan operasi penyederhanaan berikut dengan hukum yang digunakan tertulis di sisi kanannya. Penyederhanaan ekspresi logika atau bentuk-bentuk logika ini dibuat sesederhana mungkin dan sudah tidak dimungkinkan dimanipulasi lagi.

Contoh 1.12 :
1.   Øp Þ Ø(p Þ Øq)
º Øp Þ Ø(Øp Ú Øq)                       ingat pÞq º ØpÚq
º Ø(Øp) Ú Ø(Øp Ú Øq)                             ingat pÞq º ØpÚq
º p Ú (p Ù q)                                  Hk. Negasi ganda dan De Morgan
º (pÚp) Ù (pÚq)                              Hk. Distributif
º pÙ(pÚq)                                                Hk. Idempoten pÚp º p
º p                                                Hk. Absorbsi
2.   pÚ(pÙq)
º (pÙ1) Ú(pÙq)                              Hk.Identitas
º pÙ(1Úq)                                                Hk.Distributif
º pÙ1                                             Hk.Identitas Ú
º p                                                 Hk.Identitas Ù

3.   (pÞq) Ù (qÞp)
º (ØpÚq) Ù (ØqÚp)                         ingat pÞq º ØpÚq
º (ØpÚq) Ù (pÚØq)                         Hk. Komutatif
º [(ØpÚq)         Ùp] Ú [(ØpÚq)ÙØq]          Hk. Distributif
º [(pÙØp)Ú(pÙq)] Ú [(ØpÙØq)Ú(qÙØq)]    Hk. Distributif
º [0Ú(pÙq)] Ú [(ØpÙØq)Ú0]            Hk. Kontradiksi
º (pÙq)Ú(ØpÙØq)                           Hk. Identitas

Operasi penyederhanaan dengan menggunakan hukum-hukum logika dapat digunakan untuk membuktikan suatu ekspresi logika Tautologi, Kontradiksi, maupun Contingent. Jika hasil akhir penyederhanaan ekspresi logika adalah 1, maka ekspresi logika tersebut adalah tautologi. Jika hasil yang diperoleh adalah 0, berarti ekspresi logika tersebut kontradiksi. Jika hasilnya tidak 0 ataupun 1, maka ekspresi logikanya adalah contingent.

Contoh 1.13 :
1.   [(pÞq)Ùp]Þq
º [(ØpÚq)Ùp] Þ q                          ingat pÞq º ØpÚq
º Ø[(ØpÚq)Ùp] Ú q                         ingat pÞq º ØpÚq
º [(pÙØq)ÚØp] Ú q                         Hk. Negasi ganda dan De Morgan
º [(pÚØp)Ù(ØqÚØp)] Ú q                 Hk. Distributif
º [1Ù(ØpÚØq)] Ú q                         Hk. Idempoten dan komutatif
º (ØpÚØq)Úq                                  Hk. Identitas
º ØpÚ(ØqÚq)                                  Hk. Assosiatif
º ØpÚ1                                          Hk. Idempoten
º 1                                                          Hk. Identitas
Karena hasil akhirnya 1, maka ekspresi logika diatas adalah tautologi.

2.   (pÚq) Ù [(Øp) Ù (Øq)]
º (pÚq)Ù(ØpÙØq)                                             
º [(pÚq)ÙØp]Ù[(pÚq)ÙØq]                        Hk. Distributif
º [(pÙØp)Ú(qÙØp)]Ù[(pÙØq)Ú(qÙØq)]      Hk. Distributif
º [0Ú(qÙØp)]Ù[(pÙØq)Ú0]                        Hk. Negasi
º (ØpÙq)Ù(pÙØq)                                     Hk. Idempoten
º (ØpÙp)Ù(qÙØq)                                     Hk. Assosiatif
º 0Ù0                                                      Hk. Negasi
º 0                                                                   Hk. Idempoten
Hasil akhir 0, maka ekspresi logika diatas adalah kontradiksi.

3.   [(pÚq)ÙØp] Þ Øq
º [(pÙØp)Ú(qÙØp)] Þ Øq                         Hk. Distributif
º [0 Ú (qÙØp)] Þ Øq                               Hk. Negasi
º (qÙØp) Þ Øq                                        Hk. Identitas
º Ø(qÙØp) Ú Øq                                       ingat pÞq º ØpÚq
º (ØqÚp) Ú Øq                                         Hk. De Morgan
º (ØqÚØq)Úp                                           Hk. Assosiatif
º ØqÚp                                                    Hk. Idempoten
Hasilnya bukan 0 atau 1,  ekspresi logika di atas adalah contingent.

                  
1.2       INFERENSI LOGIKA

1.2.2          ATURAN PENARIKAN KESIMPULAN

A.   MODUS PONEN
Modus ponen atau penalaran langsung adalh salah satu metode inferensi dimana jika diketahui implikasi ” Bila p maka q ” yang diasumsikan bernilai benar dan antasenden (p) benar. Supaya implikasi pÞq bernilai benar, maka q juga harus bernilai benar.
Modus Ponen : pÞq , p q
atau dapat juga ditulis 
pÞq
p
――――
\ q

Contoh 1.16 :
Jika digit terakhir suatu bilangan adalah 0, maka bilangan tersebut habis dibagi 10
Digit terakhir suatu bilangan adalah 0
――――――――――――――――――――――――――――――――――――
\ Bilangan tersebut habis dibagi 10
    
B.   MODUS TOLLENS
Bentuk modus tollens mirip dengan modus ponen, hanya saja premis kedua dan kesimpulan merupakan kontraposisi premis pertama modus ponen. Hal ini mengingatkan bahwa suatu implikasi selalu ekuivalen dengan kontraposisinya.
Modus Tollens : pÞq, Øq Øp
Atau dapat juga ditulis
pÞq
Øq
――――
\ Øp

Contoh 1.17:
Jika digit terakhir suatu bilangan adalah 0, maka bilangan tersebut habis dibagi 10
Suatu bilangan tidak habis dibagi 10
――――――――――――――――――――――――――――――――――――
\ Digit terakhir bilangan tersebut bukan 0

C.   PENAMBAHAN DISJUNGTIF (ADDITION)
Inferensi penambahan disjungtif didasarkan atas fakta bahwa suatu kalimat dapat digeneralisasikan dengan penghubung ”Ú”. Alasannya adalah karena penghubung ”Ú” bernilai benar jika salah satu komponennya bernilai benar.
Misalnya saya mengatakan ”Langit berwarna biru” (bernilai benar). Kalimat tersebut tetap akan bernilai benar jika ditambahkan kalimat lain dengan penghubung ”Ú”. Misalnya ”Langit berwarna biru atau bebek adalah binatang menyusui”. Kalimat tersebut tetap bernilai benar meskipun kalimat ”Bebek adalah binatang menyusui”, merupakan kalimat yang bernilai salah.
Addition : p (pÚq) atau q (pÚq)
Atau dapat ditulis
p               atau          q
――――                           ――――
\ pÚq                        \ pÚq

Contoh 1.18 :
Simon adalah siswa SMU
――――――――――――――――――――
\ Simon adalah siswa SMU atau SMP

D.   PENYEDERHAAN KONJUNGTIF (SIMPLIFICATION)
Inferensi ini merupakan kebalikan dari inferensi penambahan disjungtif. Jika beberapa kalimat dihubungkan  dengan operator ”Ù”, maka kalimat tersebut dapat diambil salah satunya secara khusus (penyempitan kalimat).

Simplification : (pÙq) p atau (pÙq) q
Atau dapat ditulis
pÙq         atau   pÙq
―――                   ―――
\ p                   \ q

Contoh 1.19 :
Langit berwarna biru dan bulan berbentuk bulat
―――――――――――――――――――――――――
\ Langit berwarna biru atau \ Bulan berbentuk bulat

E.   SILOGISME DISJUNGTIF
Prinsip dasar Silogisme Disjungtif (Disjunctive syllogism) adalah kenyataan bahwa apabila kita dihadapkan pada satu diantara dua pilihan yang ditawarkan (A atau B). Sedangkan kita tidak memilih/tidak menyukai A, maka satu-satunua pilihan adalah memilih B. Begitu juga sebaliknya.
Silogisme Disjungtif : pÚq, Øp q dan pÚq, Øq p
Atau dapat ditulis
pÚq         atau   pÚq
Øp                    Øq
――――               ――――
\ q                  \ p

Contoh 1.20:
Saya pergi ke mars atau ke bulan
Saya tidak pergi ke mars
――――――――――――――――――
\ Saya pergi ke bulan


F.   SILOGISME HIPOTESIS (TRANSITIVITY)
Prinsip silogisme hipotesis adalah sifat transitif pada implikasi. Jika implikasi pÞq dan qÞr keduanya bernilai benar, maka implikasi pÞr bernilai benar pula.
Transitivity : pÞq , qÞr pÞr
Atau dapat ditulis
pÞq
qÞr
―――――
\ pÞr

Contoh 1.21:
Jika hari hujan maka tanahnya menjadi berlumpur
Jika tanahnya berlumpur maka sepatu saya akan kotor
―――――――――――――――――――――――――――――
\ Jika hari hujan maka sepatu saya akan kotor

A.   KONJUNGSI
Jika ada dua kalimat yang masing-masing benar, maka gabungan kedua kalimat tersebut dengan menggunakan penghubung ”Ù” juga bernilai benar.

Konjungsi
p
q
――
\ pÙq

B.   DILEMA
Kadang-kadang, dalam kalimat yang dihubungkan dengan penghubung ”Ú”, masing-masing kalimat dapat mengimplikasikan  sesuatu yang sama. Berdasarkan hal itu maka suatu kesimpulan dapat diambil.
Dilema :
pÚq
pÞr
qÞr
―――
\r




Comments
0 Comments

0 comments:

Post a Comment